Анализ крови на общий антиоксидантный статус

Сегодня антиоксиданты стали неким критерием качества: если они содержатся в продуктах или косметике, то нужно брать и побольше. Но что это такое? В чем столь популярность БАДов, пищевых добавок с антиоксидантами? Помогут ли они жить долго, счастливо и оставаться молодым?
 

Что такое свободнорадикальное окисление?

Многое мы делим на «черное» или «белое» и полутонов быть не может. Однако это нежелание разобраться в основах, и привело к тому, что в сети, СМИ и других источниках информации с великим упорством гуляют мифы о том, что физиологическая реакция окисления несет в себе вселенский вред, и только антиоксиданты спасут мир. Пойдем другим, научным и доскональным путем, разбираясь в нюансах.

Начать стоит с того, что просто окислительных реакций в организме не бывает. Если что-то окислилось, то есть потеряло электроны, они недолго будут «лежать» и быстро задействуются в процессах восстановления. Поэтому подобные реакции в организме называются окислительно-восстановительными. На них держится наша жизнь: это обменные процессы, фотосинтез, гниение, дыхание и др.

В ходе некоторых окислительно-восстановительных реакций образуются перекисные соединение и тогда они называются свободнорадикальными.

Такое название связано с нестабильными активными частицами, молекулами, в химической структуре которых имеется неспаренный электрон у атома кислорода. Главная задача этого электрона – как можно скорее что-нибудь окислить.

Такие соединения называются активными формами кислорода. Они реагируют между собой или же в качестве «жертвы» выбирают липиды, белки и др.
 

Вред и польза свободнорадикального окисления

Перекисные соединения, которые образуются в результате свободнорадикального окисления, также являются активными химическими веществами и порождают новые активные формы кислорода.

Реакция следует за реакцией и постепенно становиться лавинообразной, неконтролируемой. И этот хаос для организма опасен разрушениями, болезнями.

Несмотря на весь вышеописанный ужас, такие реакции организму нужны для поддержания его жизнедеятельности:

  • по такому принципу происходят реакции с участием некоторых ферментов;
  • синтез гормонов простагландинов и биологически активных веществ лейкотриенов;
  • процесс автоокисления гемоглобина, без чего невозможен перенос кислорода, межклеточные взаимодействия;
  • окисление лекарств и любых других веществ, которые поступают извне и др.

 
Свободные радикалы: друг или враг?

Организм – система продуманная, и если существуют свободнорадикальное окисление и радикалы, то они не только вредны, но и необходимы, все дело в мелочах.

Некоторые из них организм вырабатывает самостоятельно – существуют эндогенные источники радикалов: в норме протекающие процессы обмена энергией, работа иммунных клеток.

Например, фагоциты – клетки иммунной защиты вырабатывают активные формы кислорода для борьбы с микробами, с их помощью запускается выработка цитокинов, которые отвечают за воспалительные реакции. А, как известно, воспаление – защитная реакция организма.

Кроме того, активные формы кислорода стимулируют процессы образования белков, гормонов и др.

Но существуют и экзогенные свободные радикалы, которые поступают извне. Их источниками становится УФ-излучение, сигаретный дым, загрязнения воздуха, особенности питания, в котором избыток меди и железа, действие бытовой химии и др. Вот такие активные формы кислорода вредны.

Стоит отметить, что даже эндогенные свободные радикалы могут быть вредны для организма: во время болезни, на фоне курения, да и в целом неправильного образа жизни. Они приводят к повреждению мембран клеток, способствуют разрушению белков, нарушают естественные процессы деления клеток и запускают их программированную гибель.
 

Антиоксиданты

Это вещества, которые вмешиваются в свободнорадикальные реакции и прерывают их. Но если человек здоров, полноценно питается и ведет активный образ жизни, его организм, как система вполне самодостаточная и саморегулируемая, справляется со всеми последствиями окислительно-восстановительных реакций, без каких-либо последствий.

На каждую опасную активную форму кислорода есть фермент с антиоксидантной активностью, которая их уничтожит. И, конечно, организм самостоятельно вырабатывает антиоксиданты: стероидные гормоны, простагландины и ряд других биологически активных веществ. Многие из этих соединений содержатся в продуктах.
 

Исключительно польза?

Заветная надпись «антиоксиданты» делает продукт априори полезным, его нужно включать в рацион, использовать косметику и чем больше, тем лучше, но не все так просто.

Среди представителей медицинского сообщества до сих пор остается открытым вопрос необходимости дополнительного приема продуктов с их содержанием. Кроме того, нет четко сформированных показаний к их применению.

Эксперименты на животных показали, что введение в организм антиоксидантов действительно улучшает антиоксидантную активность, но как только они выводятся из организма, то способность справляться с действием свободных радикалов снижается и даже падает ниже нормы. Проще говоря, организм теряет способность самостоятельно работать и обезвреживать свободные радикалы, ему нужна помощь и это некая форма зависимости.

Поэтому бесконтрольный прием в виде БАДов может оказаться плохой услугой здоровому организму, который работает без сбоев! Другое дело, когда речь идет о болезнях. Но прежде чем принимать такие средства не лишней будет консультация с врачом.
 

Антиоксиданты в продуктах

Не все антиоксиданты одинаковы. Они взаимодействуют с соединениями и обладают не одинаковой активностью, да и их активация будет требовать различных условий. Для примера, популярный антиоксидант – витамин С гораздо слабее по своем свойствам в сравнении с витамином Е.

Отдельно нужно поговорить об употреблении ягод, овощей и фруктов ради получения антиоксидантного эффекта.

Первые места в списке полезных продуктов занимает: черника, виноград, сухое красное вино, которые содержат флавоноиды.

 Они действительно могут вмешиваться в свободнорадикальные процессы, но только на начальных этапах. Но подтвердить это удалось пока только в лабораторных условиях, то есть в пробирке.

Нельзя не отметить, что количество антиоксидантов в продуктах мизерное. Чтобы организм почувствовал, что его «кормят» антиоксидантами, нужно съесть несколько килограмм брокколи и запить 2-3 литрами вина.

Антиоксидантный статус

Антиоксидантный статус – это показатель общего здоровья, который отражает количественное значение реактивных форм кислорода.

Это такие химические формы кислорода, которые не участвуют в клеточном дыхании, но нужны для различных реакций – передачи сигналов от молекул, регуляции работы гормонов, для транспорта.

Они принимают участие в жизни практически всех клеток человеческого организма и отвечают за множество важнейших физиологических процессов.

Антиоксиданты – это вещества, которые позволяют сбалансировать воздействие свободных радикалов. Последние постоянно образуются в организме и в норме мало влияют на работу клеток – как раз благодаря актиоксидантам.

При определении статуса измеряют четыре основных показателя: общий статус (ТАS), а также кислородные эритроцитарные показатели – фермент супероксидисмутаза (СОД), фермент глутатинредуктаза (ГПР) и фермент глутатионпероксидаза (ГП). За аббревиатурами скрываются названия ферментов — веществ, которые активнее всего реагируют на различные изменения в организме, а, значит, позволяют выявить патологию.

Это новый метод исследования, который позволяет оценить общее состояние организма. Он не применяется для дифференциальной диагностики, но дает хорошие результаты, как вспомогательный метод, при постановке самых различных диагнозов, а также при подборе лечения.

Что дает анализ?

Серьезное повышение показателей может наблюдаться при хронических заболеваниях и отравлениях токсинами или при наличии вредных привычек. Также повышение может указывать на наличие облучения, ИБС или прием некоторых лекарств. Снижение характерно для заболеваний сердца, костной системы и нервов. Снижение показателей наблюдается гораздо чаще, чем повышение.

Если нет правильной коррекции, и у пациента долгое время наблюдается сниженный уровень актиоксидантов, то наступает так называемый окислительный стресс – это увеличение количества свободных радикалов. В норме актиоксиданты их разрушают, тем самым защищая важнейшие молекулярные структуры от повреждения. Во время окислительного стресса разрушению подвергаются белки, липиды и молекулы ДНК.

Длительное воздействие свободных радикалов не проходит бесследно: разрушаются клеточные мембраны, запускаются процессы мутагенеза, повреждаются клеточные рецепторы, меняется активность ферментов, повреждаются энергетические станции клетки – митохондрии.

Повреждения на клеточном уровне могут спровоцировать развитие множества серьезных заболеваний: от сердечно-сосудистых до онкологических. Если есть предрасположенность, то начинается болезнь.

Анализ на антиоксиданты позволяет распознать снижение защитной активности антиоксидантной системы. Если заболеваний еще нет – можно вовремя начать лечение и предотвратить потерю здоровья. А при диагностике имеющихся болезней, результаты анализа подскажут, насколько высока вероятность болезни.

Читать полностью

Общий антиоксидантный статус (TAS) — 2 300 руб.

Сроки выполнения

3 рабочих дня.

Взятие крови из вены оплачивается отдельно — 300 руб.(При единовременном выполнении нескольких анализов, услуга по сбору биоматериала оплачивается однократно)

Показания к исследованию

  • Для оценки рисков развития болезней, связанных со снижением антиоксидантной защиты.
  • Для диагностики различных наследственных обменных заболеваний.
  • Для оценки уровня актиоксидантов и диагностики дефицита их в рационе.

Эритроциты (цельная кровь, гепарин);

Подготовка к исследованию

Подготовка заключается в отказе от алкоголя и ночном голодании. Кровь принято брать с утра. Голодание должно продолжаться минимум 8 часов. Если пациент принимает какие-либо лекарства или БАДы, об этом нужно предупредить лечащего врача еще до назначения анализа.

  • ТАS ммоль/л, норма 1,50 — 2,75
  • ГП Ед/г Нb, норма 50 — 100
  • ГПР Ед/г Hb, норма 2,5 — 6,0
  • СОД Ед/г Hb, норма 1200 — 2000

Причины повышения показателя:

  • Ишемическая болезнь сердца.
  • Длительное воздействие токсинов.
  • Наличие вредных привычек – пристрастие к алкоголю и курение.
  • Повышенная лучевая нагрузка.
  • Наличие хронического воспаления

Причины снижения показателя:

  • Заболевания тканей легких.
  • Заболевания щитовидной железы.
  • Сахарный диабет.
  • Болезни сердца и сосудов.
  • Наличие психиатрического диагноза или декомпенсированной неврологической патологии.
  • Злокачественные опухоли.
  • Снижение наблюдается при проведении химиотерапии и лучевом лечении.
  • Некоторые инфекционные заболевания также влияют на антиоксидантный статус в сторону снижения показателей.
  • Артрит и некоторые воспалительные заболевания суставов.
  • Хронические болезни кишечника, характеризующиеся наличием постоянных очагов воспаления.
Читайте также:  Как определить истмико-цервикальную недостаточность

Кроме того, изменение показателей наблюдается при выраженном дефиците основных витаминов, микро- и макроэлементов в ежедневном рационе.

В таком случае требуется только диетологическая коррекция.

Антиоксидантные показатели не используются в контексте постановки конкретного диагноза, но имеют значение вместе с клинической картиной и результатами других инструментальных исследований и лабораторных тестов. Результаты анализа не стоит интерпретировать самостоятельно.

Для проведения анализа и подбора оптимального лечения обращайтесь в клинику ЦЭЛТ. Компетентные специалисты, высокотехнологичное оборудование и дружелюбная атмосфера – вот залог быстрого выздоровления.

Все услуги лаборатории

Комплексная оценка оксидативного стресса (7 параметров)

  • Комплекс исследований, позволяющий оценить активность свободнорадикальных процессов в организме и состояние систем антиоксидантной защиты.
  • Синонимы русские
  • Оценка окислительного стресса, оценка антиоксидантной защиты.
  • Синонимы английские
  • Assessment of oxidative stress, evaluation of antioxidant protection.
  • Метод исследования
  • Высокоэффективная жидкостная хроматография.
  • Какой биоматериал можно использовать для исследования?
  • Венозную кровь.
  • Как правильно подготовиться к исследованию?
  • Не принимать пищу в течение 2-3 часов до исследования, можно пить чистую негазированную воду.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Окислительный (оксидативный) стресс — состояние, при котором в организме слишком много свободных радикалов — молекул без одного электрона.

В нормальных условиях внутриклеточное содержание активных форм кислорода (ROS) поддерживается на низком уровне различными ферментными системами, участвующими в редокс-гомеостазе. Поэтому окислительный стресс можно рассматривать как дисбаланс между прооксидантами и антиоксидантами в организме.

В течение последних двух десятилетий окислительный стресс был одной из самых острых проблем среди биологических исследователей во всем мире. Стресс можно определить как процесс измененного биохимического гомеостаза, вызванного психологическими, физиологическими или экологическими причинами (стрессорами).

Любое изменение в гомеостазе приводит к увеличению производства свободных радикалов, значительно выше детоксикационной способности местных тканей. Эти избыточные свободные радикалы затем взаимодействуют с другими молекулами внутри клеток и вызывают окислительное повреждение белков, мембран и генов. В процессе этого часто образуется еще больше свободных радикалов, вызывая цепь разрушений.

Окислительные повреждения связаны с причиной многих заболеваний, таких как сердечно-сосудистые заболевания, дегенерация нейронов и онкология, а также влияют на процесс старения.

Стресс может запускаться различными стрессорами, например экстремальными условиями окружающей среды, чрезмерными физическими упражнениями или полной иммобилизацией, недоеданием. Внешние факторы, такие как загрязнение, избыточная инсоляция и курение, также вызывают образование свободных радикалов.

Стресс может быть острым или хроническим. Стрессор инициирует любой из факторов, играющих решающую роль в поддержании клеточного гомеостаза.

Окислительный стресс возникает, когда гомеостатические процессы терпят неудачу, а генерация свободных радикалов намного превышает способность антиоксидантной защиты организма, тем самым способствуя повреждению клеток и тканей.

Окислительный стресс является сложным процессом. Его воздействие на организм зависит от типа окислителя, от места и интенсивности его производства, от состава и активности различных антиоксидантов, а также от способности восстановительных систем. 

Термин «ROS» включает в себя все нестабильные (свободные) метаболиты молекулярного кислорода (O2), которые имеют более высокую реакционную способность, чем O2 (например, супероксидный радикал, гидроксильный радикал) и нерадикальные молекулы (например, перекись водорода (H2O2). Эти ROS генерируются как побочный продукт нормального аэробного метаболизма, но их уровень увеличивается при стрессе, что является основной опасностью для здоровья.

До 1-3% легочного поступления кислорода преобразуется в ROS. В условиях нормального метаболизма непрерывное образование свободных радикалов важно для нормальных физиологических функций, таких как генерация АТФ, различные катаболические, анаболические процессы и сопровождающие клеточные окислительно-восстановительные циклы.

Центральная нервная система чрезвычайно чувствительна к повреждению свободных радикалов из-за относительно небольшой общей антиоксидантной способности. ROS, продуцируемые в тканях, могут нанести прямой ущерб макромолекулам, таким как липиды, нуклеиновые кислоты и белки.

Полиненасыщенные жирные кислоты являются одной из предпочтительных целей окисления для них.

Кислородсодержащие радикалы, в частности радикал супероксидного аниона, гидроксильный радикал (ОН) и алкилпероксильный радикал (OOCR), являются мощными инициаторами перекисного окисления липидов, роль которых хорошо установлена в патогенезе широкого спектра заболевания (например, развитии атеросклероза, прогрессировании фиброза печени).

В результате перекисного окисления липидов в биологических системах накапливаются их конечные продукты, такие как малондиальдегид (MDA), 4-гидрокси-2-ноненол (4-HNE) и F2-изопростанты.

Основания ДНК также очень восприимчивы к окислению ROS, а преобладающим конечным продуктом этого взаимодействия является 8-гидрокси-2-дезоксигуанозин. В результате могут возникнуть мутации и делеции как в ядерной, так и в митохондриальной ДНК.

Митохондриальная ДНК особенно подвержена окислительному повреждению из-за ее близости к первому источнику ROS и недостаточной восстановительной способности по сравнению с ядерной ДНК. Эти окислительные модификации приводят к функциональным изменениям в ферментативных и структурных белках, которые могут оказывать существенное физиологическое воздействие.

Также хорошо установлена связь между окислительным стрессом и иммунной функцией организма. Механизм иммунной защиты использует повреждающие эффекты окислителей с защитной целью, используя ROS в уничтожении патогенов. В нескольких исследованиях была продемонстрирована взаимозависимость окислительного стресса, иммунной системы и воспаления.

Все факторы, ответственные за окислительный стресс, прямо или косвенно участвуют в механизме защиты иммунной системы. Любые изменения, приводящие к иммуносупрессии, могут спровоцировать развитие болезни. Окислительная модификация белков не только изменяет их антигенный профиль, но также усиливает антигенность.

Существует несколько примеров аутоиммунных заболеваний, возникающих в результате таких окислительных модификаций, а именно системная красная волчанка, сахарный диабет и диффузная склеродермия. Более того, окислительный стресс представляет дополнительную угрозу для тканей-мишеней, как в случае бета-клеток, продуцирующих инсулин.

Окислительный стресс, вызванный неразрешенным и стойким воспалением, может быть основным фактором, влияющим на изменение динамики иммунных реакций. Эти изменения могут создать иммунологический хаос, который может привести к потере архитектурной целостности клеток и тканей, что в конечном итоге приведет к хроническим заболеваниям или онкологии.

Окислительный стресс может запускать развитие аллергии, аутоиммунных или нейродегенеративных заболеваний (например, болезнь Альцгеймера) наряду с измененным ростом клеток, хроническими инфекциями, ангиогенезом и раковыми заболеваниями. Старение является неотъемлемым процессом, характерным для всех живых клеток.

Теория окислительного стресса в настоящее время является наиболее приемлемым объяснением старения, которое подтверждает, что увеличение ROS приводит к функциональным изменениям, патологическим состояниям и другим клинически наблюдаемым признакам старения.

В нормальных условиях физиологичным является равновесие между уровнем антиоксидантов и клеточными прооксидантами. Окислительный стресс может быть запущен не только стрессорами, но и дефицитом антиоксидантов, приводящим к образованию избыточного количества активного кислорода или азота.

Антиоксиданты являются первой линией на пути предотвращения развития стресса. Несколько первичных антиоксидантных ферментов (SOD, каталаза) и несколько пероксидаз катализируют сложный каскад реакций для превращения ROS в более стабильные молекулы, такие как вода и O2.

Помимо первичных антиоксидантных ферментов, большое количество вторичных ферментов действуют в тесной связи с малыми молекулярными антиоксидантами с образованием окислительно-восстановительных циклов, которые обеспечивают необходимые кофакторы для первичных антиоксидантных ферментных функций.

Малые молекулярные неферментные антиоксиданты (например, GSH, NADPH, тиоредоксин, витамины E и C и следовые металлы, такие как селен) также действуют как прямые поглотители ROS.

Эти ферментативные и неферментные антиоксидантные системы необходимы для поддержания жизни путем поддержания деликатного внутриклеточного редокс-баланса и минимизации нежелательного повреждения клеток, вызванного ROS.

Эндогенные и экзогенные антиоксиданты включают в себя некоторые высокомолекулярные соединения (SOD, GPx, Catalse, альбумин, металлотионеин) и некоторые низкомолекулярные вещества (мочевая кислота, аскорбиновая кислота, липоевая кислота, глутатион, убихинол, токоферол / витамин E, флавоноиды).

Комплексная оценка оксидативного стресса состоит из количественного определения содержания в крови следующих параметров: коэнзим Q10, витамин Е, витамин С, бета-каротин, глутатион, малоновый диальдегид, 8-ОН-дезоксигуанозин.

Диагностика метаболических особенностей организма позволит врачу-специалисту скорректировать антиоксидативный статус пациента до появления симптомов заболевания, используя показатели общего антиоксидантного статуса и перекисного окисления липидов для назначения антиоксидативной терапии.

Для чего используется исследование?

  • Для комплексной диагностики оксидативного стресса и степени интоксикации организма;
  • для выявления дефицита антиоксидантов и оценки риска заболеваний, ассоциированных с их недостатком (заболевания сердечно-сосудистой системы, иммунодефициты, доброкачественные и злокачественные опухоли, гормональные нарушения, бесплодие, аутоиммунные заболевания);
  • для выявления дефицита микроэлементов и витаминов, связанных с антиоксидантными системами организма;
  • для выявления генетических форм дефицита ферментов.

Когда назначается исследование?

  • При предраковых заболеваниях;
  • при аутоиммунных заболеваниях (ревматоидный артрит, системная красная волчанка, диффузная склеродермия);
  • при нейродегенеративных заболеваниях;
  • при бесплодии и привычном невынашивании беременности;
  • при хронических инфекциях;
  • при заболеваниях печени;
  • при онкологических заболеваниях;
  • при подозрении на врождённый дефицит ферментов;
  • при заболеваниях сердечно-сосудистой системы.
  1. Что означают результаты?
  2. Референсные значения
  3. Отдельно для каждого показателя, входящего в состав комплекса:
Возраст Реф. значения, нг/мл
6-12 лет 41,4 — 476
12-20 лет 25,9 — 353
20-40 лет 24,1 — 595
40-60 лет 19,4 — 792
> 60 лет 28 — 1020

Глутатион

В составе глутатионферментного комплекса разрушает радикалы пероксида, предотвращая тем самым разрушение клеточных мембран. Для сохранения активности глутатионпероксидазы, помимо селена, необходимы витамины А, С, Е, серосодержащие аминокислоты. Глутатионзависимые ферменты связывают различные ксенобиотики.

  • При дефиците глутатиона активируются процессы свободнорадикального окисления в клетках, что способствует: — повреждению молекулы ДНК; — повышению риска развития онкологических заболеваний, нарушению состояния кожи, ногтей, волос; — возможному бесплодию, невынашиванию беременности, мертворождению, врождённым патологиям у ребенка;
  • — ухудшению дезинтоксикационной функции печени.
  • Малоновый диальдегид (MDA)
  • Конечный продукт перекисного окисления липидов. Повышенный уровень MDA наблюдается при:
  • — тяжелом течении псориаза,- инсульте, рассеянном склерозе, хронической патологии почек и некоторых инфекциях (сифилис, стрептококковая инфекция);- онкологии (рак желудка и легких);- уровне MDA более чем 100 нмоль/мл (считается неблагоприятным прогностическим маркером при ИБС).
  • 8-ОН-дезоксигуанозин
Читайте также:  Методы лечения замершей беременности. Лечение после неразвивающейся беременности

Биологический маркер окислительного стресса, возникающий в результате повреждения молекулы ДНК. Увеличение концентрации свидетельствует j возможном наличии мутаций в клетках и, как правило, о появлении делеций ДНК.

Коэнзим Q10 (убихинон)

Является одним из наиболее мощных антиоксидантов в клетке. Наибольшее количество убихинона содержится в тканях с повышенной энергетической потребностью: сердечная и поперечно-полосатая мускулатура, головной мозг, печень, почки, поджелудочная железа и др.

Играет ключевую роль в сократительной способности миокарда и поперечно-полосатой мускулатуры, улучшении кровотока в миокарде, антиаритмическом и гипотензивном действии, повышении толерантности к физической нагрузке, антиатеросклеротическом эффекте, апоптозе и замедлении процессов старения.

  1. Недостаток коэнзима Q10 приводит к:- развитию кардиологической патологии;- нарушению работы иммунной системы (частые простудные и инфекционные заболевания);- расстройствам эндокринной системы и др.
  2. Снижение содержания КоQ10 на 75% приводит к гибели клеток.
  3. Витамин C

Важный клеточный антиоксидант во многих тканях. Снижает риск развития сердечно-сосудистых заболеваний, включая инсульт.

Витамин Е

Один из наиболее эффективных антиоксидантов. Улучшает иммунный статус, снижает риск атеросклероза.

Бета-каротин

Предшественники витамина А – каротиноиды – эффективно уничтожают свободные радикалы, в том числе синглетный кислород, который может привести к развитию неоплазий. Защищает клетки от старения.



  • Также рекомендуется
  • [02-029] Клинический анализ крови: общий анализ, лейкоцитарная формула, СОЭ (с микроскопией мазка крови при выявлении патологических изменений)
  • [40-498] Базовые биохимические показатели
  • Кто назначает исследование?
  • Терапевт, врач общей практики.
  • Литература
  • C. A. Lastra and I. Villegas, «Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications», Biochemical Society Transactions, vol. 35, no. 5, pp. 1156–1160, 2007.
  • I. Stoian, A. Oros, and E. Moldoveanu, «Apoptosis and free radicals», Biochemical and Molecular Medicine, vol. 59, no. 2, pp. 93–97, 1996.

Антиоксидантный статус Total antioxidant status, TAS — узнать цены на анализ и сдать в Москве

Метод определения

используется ксантин и ксантиноксидаза (XOD) для генерирования кислородных радикалов, которые, вступая в реакцию с 2-(4-иодофенил)-3-(4-нитрофенол)-5-фенилтетразолиумхлорид (I.N.T.), образуют окрашенное в красный цвет соединение формазан. Активность супероксиддисмутазы определяется как величина ингибирования этой реакции.

глутатионпероксидаза с помощью гидроперекиси кумина катализирует окисление глутатиона. В присутствии глутатионредуктазы и НАДФ, окисленный глутатион сразу же восстанавливается с соответствующим окислением НАДФН в НАДФ+. Измеряется снижение абсорбции на 340 нм.

глутатионредуктаза катализирует восстановление глутатиона в присутствии НАДФН, который окисляется в НАДФ+. Измеряется снижение абсорбции на 340 нм. Общий антиоксидантный статус: ABTSR (2,2'-азидо-ди-[3-этилбензтиазолин сульфонат]) инкубируют с пероксидазой (метмиоглобин) и Н2О2 с образованием радикала ABTSR+.

Антиоксиданты, содержащиеся в тестируемой пробе, подавляют развитие окраски пропорционально их концентрации в образце.

Исследуемый материал Смотрите в описании

Доступен выезд на дом

Онлайн-регистрация

Внимание! По техническим причинам необходимо уточнять график приема биоматериала для исследования в медицинском офисе. 

Краткое описание исследования «Антиоксидантный статус» 

Комплекс тестов, направленных на оценку антиоксидантных свойств крови. 

  • супероксиддисмутаза эритроцитов;  
  • глутатионпероксидаза эритроцитов;  
  • глутатионредуктаза эритроцитов; 
  • общий антиоксидантный статус сыворотки. 

Продукция различных реактивных форм кислорода является элементом важных физиологических процессов, в том числе механизмов передачи сигнала и регуляции действия гормонов, факторов роста, цитокинов, процессов транскрипции, апоптоза, транспорта, иммуномодуляции, нейромодуляции.

Источниками реактивных форм кислорода являются митохондриальные процессы дыхания, НАДФH-оксидазы, ксантиноксидазы, NO-синтазы. Образование свободных радикалов (высокореактивных молекул, которые содержат неспаренные электроны) ‒ постоянно происходящий в организме процесс.

В норме он физиологически сбалансирован за счет активности эндогенных антиоксидантных систем, которые способны увеличивать активность в ответ на увеличение прооксидантных воздействий. 

Повышенное образование реактивных форм кислорода наблюдается при хроническом воспалении, ишемии, воздействии вредных веществ окружающей среды, облучении, курении, приеме некоторых препаратов.

При чрезмерном увеличении продукции свободных радикалов вследствие прооксидантных воздействий и/или несостоятельности антиоксидантной защиты развивается окислительный стресс, сопровождающийся повреждением белков, липидов и ДНК.

Последствиями действия свободных радикалов могут быть мутагенез, разрушение мембран, повреждение рецепторного аппарата, изменение ферментативной активности и повреждение митохондрий, что влияет на развитие многих видов патологии (атеросклероз, ишемическая болезнь сердца, артериальная гипертензия, сахарный диабет, метаболический синдром, иммунодефицитные состояния, злокачественные новообразования). Эти процессы значительно усиливаются на фоне снижения активности антиоксидантных систем организма. Реактивные формы кислорода вовлечены в процессы старения и развития заболеваний, связанных со старением (сердечно-сосудистые заболевания, нейродегенеративные нарушения, канцерогенез). 

Супероксиддисмутаза эритроцитов (Superoxide dismutase, SOD in erythrocytes) 

Супероксиддисмутаза (СОД) – фермент, катализирующий дисмутацию токсичного супероксидного радикала, вырабатывающегося при окислительных энергетических процессах, в перекись водорода и молекулярный кислород.

Этот фермент присутствует во всех клетках, потребляющих кислород, и представляет важнейшее звено антиоксидантной защиты. Супероксиддисмутаза человека содержит цинк и медь, существует также марганец-содержащая форма фермента.

СОД и каталаза образуют антиоксидантную пару, которая предотвращает запуск процессов цепного окисления под действием свободных радикалов.

Наличие СОД позволяет поддерживать физиологическую концентрацию супероксидных радикалов в тканях, что обеспечивает возможность существования организма в кислородной атмосфере и использование кислорода. Антиоксидантная активность СОД в тысячи раз выше, чем у таких антиоксидантов, как витамины А и Е. 

Супероксиддисмутаза защищает сердечную мышцу от действия свободных радикалов, образующихся при недостаточности кислорода (ишемии). Степень повышения СОД обратно пропорциональна деятельности левого желудочка и может быть использована как маркер повреждения миокарда.

При анемии (снижении в крови количества гемоглобина, эритроцитов и гематокрита) активность СОД в эритроцитах повышена. Активность СОД снижена у пациентов с ослабленной иммунной системой, что делает таких больных более чувствительными к респираторным инфекциям с развитием пневмонии.

Активность СОД эритроцитов повышена у больных гепатитом и снижается при развитии острой печеночной недостаточности. Очень высока активность СОД у больных с различными формами лейкемии. Высокую активность СОД у септических больных считают ранним маркером развития у них респираторного дистресс-синдрома.

Активность СОД эритроцитов снижена при ревматоидном артрите, ее уровень коррелирует с эффективностью проводимого лечения. 

Глутатионпероксидаза эритроцитов (Glutathione рeroxidase, GSH-Px in erythrocytes) 

Одним из основных видов поражения клеток свободными радикалами является разрушение жирных кислот, входящих в состав клеточных мембран (перекисное окисление липидов, или ПОЛ). В результате таких процессов меняется проницаемость клеточной оболочки, что приводит к нарушению жизнедеятельности клетки и ее гибели. 

Перекисное окисление липидов участвует в патогенезе многих заболеваний, в том числе атеросклероза, ишемической болезни сердца, диабетической ангиопатии.

Поскольку жирные кислоты легко поддаются окислению, оболочки клеток содержат большое количество жирорастворимых антиоксидантов, таких как витамины А и Е, которые включены в механизмы защиты от перекисного окисления липидов.

К специфическим антиоксидантным ферментам относится глутатион-ферментный автономный комплекс, в который входят трипептид глутатион и антиоксидантные ферменты глутатионпероксидаза (ГП), глутатион-S-трансфераза и глутатионредуктаза. 

ГП служит катализатором реакции восстановления перекисных липидов с помощью глутатиона, многократно ускоряя этот процесс. Помимо этого, глутатионпероксидаза, так же как и каталаза, способна разрушать перекись водорода. При этом она сравнительно более чувствительна к низким концентрациям перекиси водорода, которые наблюдаются чаще.

В некоторых тканях (клетки мозга, сердце) каталазы почти нет, поэтому ГП играет там роль основного антиоксидантного фермента. Глутатионпероксидаза является по своей структуре металлоферментом. Для ее выработки необходим микроэлемент селен, причем в достаточно больших количествах, так как каждая молекула ГП содержит 4 атома селена.

 

При недостаточном поступлении селена вместо ГП образуется глутатион-S-трансфераза, разрушающая только перекись водорода и не заменяющая полностью функции глутатионпероксидазы. Наибольшее количество ГП сосредоточено в печени, эритроцитах, надпочечниках.

Значительное ее количество содержится в нижних дыхательных путях, где она нейтрализует поступающие из внешней среды озон, окись азота и другие активные молекулы. Активность ГП в организме во многом определяет динамику патологических процессов.

При снижении активности данного фермента нарушается защита клеток печени от алкоголя и опасных химических веществ, повышается риск возникновения онкологических заболеваний, бесплодия, развития ревматоидного артрита и других заболеваний. Уровень фермента в эритроцитах снижен при железодефицитной анемии, отравлении свинцом, дефиците селена.

Повышение уровня отмечается при добавлении в пищу полиненасыщенных жирных кислот. Концентрация фермента в эритроцитах высока при дефиците глюкозо-6-фосфатдегидрогеназы, альфа-талассемии, остром лимфоцитарном лейкозе. 

Глутатионредуктаза эритроцитов (Glutathione reductase in erythrocytes (GSSG-Red)

Глутатионредуктаза – фермент класса оксидоредуктаз, участвует в восстановлении (освобождении) связанного глутатиона, который выступает как коэнзим в биохимических реакциях, играет важную роль в механизмах сборки белков, увеличивает пул витаминов А и С, и пр.

Глутатионредуктаза часто рассматривается в ассоциации с глутатионпероксидазой, поскольку активность последней в значительной степени зависит от содержания восстановленного глутатиона. Совместное действие этих ферментов включено в механизмы защиты организма от перекиси водорода и органических перекисей.

В состав субъединиц глутатионредуктазы входит остаток коферментной формы рибофлавина (витамин В2).  

Уровень глутатионредуктазы в эритроцитах увеличивается при наследственной недостаточности фермента глюкозо-6-фосфатдегидрогеназы (что позволяет использовать глутатионредуктазу в диагностических целях), при диабете, после введения никотиновой кислоты, после интенсивной физической нагрузки.

Низкий уровень этого энзима встречается при тяжелых заболеваниях (рак, гепатит, сепсис и др.).

Исследование глутатионредуктазы может быть использовано в скрининге, направленном на выявление заболеваний печени, злокачественных заболеваний, обнаружение генетических форм дефицита ферментов, оценку статуса витамина В2. 

Читайте также:  Анализ предрасположенности к сердечно-сосудистым заболеваниям

Общий антиоксидантный статус сыворотки (Total antioxidant status, TAS, serum) 

Антиоксидантная активность сыворотки определяется присутствием антиоксидантных ферментов (супероксиддисмутаза, каталаза, глутатионпероксидаза, глутатионредуктаза и др.

) и антиоксидантов неферментного действия (в их числе: альбумин, трансферрин, металлотионеины, мочевая кислота, липоевая кислота, глутатион, убихинол, витамины Е и С, каротиноиды, компоненты полифеноловой структуры, поступающие с растительной пищей, включая флавоноиды, и пр.).

Для оценки состояния актиоксидантной защиты, помимо определения уровня наиболее важных антиоксидантных ферментов и неферментных антиоксидантов в крови, используют измерение суммарной антиоксидантной способности компонентов сыворотки.

Определение общего антиоксидантного статуса помогает клиницисту глубже оценить состояние пациента, факторы, влияющие на развитие текущего заболевания, и, с учетом этого, оптимизировать терапию.  

С какой целью проводят исследование антиоксидантного статуса крови 

Комплекс тестов направлен на оценку антиоксидантных свойств крови.

Литература

Основная литература:

  1. Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н.. Методы оценки свободнорадикального окисления и антиоксидантной системы организма. / Методические рекомендации. – СПб.: ИКФ «Фолиант», 2000. — 104 с. 
  2. Казимирко В.К., Мальцев В.И., Бутылин В.Ю., Горобец Н.И. Свободнорадикальное окисление и антиоксидантная терапия / ‒К.: Морион, 2004. ‒- 160 с. 
  3. Путилина Ф.Е., Галкина О.В. и др. Свободнорадикальное окисление: Учебное пособие / Под ред. Н.Д. Ерощенко. – СПб.: Изд-во С.-Петерб. Ун-та, 2008. — 161 с. 
  4. Kusano C., Ferrari B. Total Antioxidant Capacity: a biomarker in biomedical and nutritional studies. – J.Cell.Mol.Biol., 2008. — № 7(1). — p.1-15.  
  5. Tietz Clinical guide to laboratory tests. 4-th ed. Ed. Wu A.N.B. – USA,W.B Sounders Company, 2006. — р.1798.

Оксидативный стресс и антиоксидантный статус у пациентов с осложнённым уролитиазом

Дерибо, А. В. Оксидативный стресс и антиоксидантный статус у пациентов с осложнённым уролитиазом / А. В. Дерибо, А. Ю. Баюров, О. С. Марзан, М. А. Корсак. — Текст : непосредственный // Молодой ученый. — 2018. — № 14 (200). — С. 112-114. — URL: https://moluch.ru/archive/200/49191/ (дата обращения: 28.04.2021).



Актуальность: В последние годы ученые различных стран приложили немало усилий по разъяснению этиопатогенеза уролитиаза, который наблюдается, в среднем, у 12 % населения в развитых странах и нередко приводит к инвалидности.

Несмотря на значительный прогресс в лечении уролитиаза, вследствие широкого использования современных методов удаления камней (ударно-волновая терапия, перкутанная нефролитотомия, методы высокой и низкой эндоурологии в сочетании с контактной литотрипсией, инклюзивный и твёрдотельный лазер, лапароскопический и хирургический методы), которые позволяют успешно высвобождать камни, патофизиологические механизмы, приводящие к развитию уролитиаза, не были окончательно выяснены, что приводит к появлению новых камней, т. е. к рецидиву заболевания. [1, с.3]

Цель: Оценить окислительный и антиоксидантный статус крови у пациентов с осложненным уролитиазом до и после операции.

Материал иметоды исследования: Исследование проводилось на группе пациентов с осложнённым уролитиазом в урологическом отделении клиники Clinique La Colline.

Показатели антиоксидантной системы и показатели окислительного стресса оценивались у 60 оперированных пациентов с различными формами мочекаменной болезни и у 30 человек в контрольной группе. Обе группы были гомогенны в зависимости от пола и возраста.

Люди в контрольной группе были действительно здоровы. Организовав исследование данным образом, удалось выделить специфические патологические изменения осложнённого уролитиаза, которые потребовали хирургического вмешательства, по сравнению со здоровыми людьми.

Интенсивность изменений окислительного стресса и антиоксидантной системы была исследована путем дозирования следующих конкретных биохимических показателей:

MDA (малоновый диальдегид), AOPP (белковые продукты окисления), NO (оксид азота), GR (глутатион редуктаза), GPO (глутатион пероксидаза), GST (глутатион-4-S-трансфераза), SOD супероксиддисмутаза, каталаза, CP (церулоплазмин), группы белков-SH(тиольные).

Анализ результатов: Биохимические исследования, проведенные у пациентов с уролитиазом, дали важную информацию об изменениях интенсивности окисления свободных радикалов и активности антиоксидантной системы (табл. 1).

Сравнительный анализ значений показателей активности окислительного стресса и антиоксидантной системы у пациентов с мочекаменной болезнью и в контрольной группе, проведенных при непараметрических тестах Колмогорова-Смирнова и Манна-Уитни, показал наличие достоверных статистических различий между обеими изученными группами. [1, с.14]

Таблица 1

Интенсивность окисления свободных радикалов иактивность антиоксидантной системы

Индекс Группа I Группа II p1 Группа III p2
NO (мкмоль / л) 80,94 ± 1,39 81,42 ± 2,09 + 0,6 %, p> 0,05 104,17 ± 2,51 + 28% p 14,65 ± 0,69 -29%, p
Ceruloplasmin (мкмоль / л) 353,57 ± 11,29 408,3 ± 14,19 + 14%, p
SOD (мкмоль / лл) 863,88 ± 19,72 809,7 ± 42,22 -7%, p 666,3 ± 114,39 + 50%, p 81,48 ± 10,17 -23 %, p≈0,35
Группы белков-SH (мкмоль / г). 7,58 ± 0,34 7,29 ± 0,62 -6%, p
S-нитрозотиол (мкмоль / л) 3,84 ± 0,09 3,74 ± 0,12 -3 %, p> 0,05 3,56 ± 0,13 -5 %, p≈0,22
  • ПРИМЕЧАНИЕ:
  • a) Группа I — контроль, группа II — уролитиаз, группа III — уролитиаз + хирургическое лечение;
  • b) p1 — достоверность статистических различий между I и II группами по тесту Колмогорова-Смирнова;
  • c) p2 — достоверность статистических различий между группами II и III в соответствии с тестом Уилкоксона.
  • Результаты исследования выявили повышенную интенсивность окислительного стресса у пациентов с уролитиазом по сравнению с здоровыми особями, что продемонстрировало важное накопление конечного продукта перекисного окисления липидов — малонового диальдегида (+ 70 %, р 0,05), ферменты, обеспечивающие первичное удаление супероксидного радикала и перекиси водорода и ограниченные, таким образом, производство наиболее вредного радикала — гидроксила. Также было обнаружено значительное снижение активности фермента, участвующего в нейтрализации органических пероксидов — глутатионпероксидазы (-20 %, р

Следовательно, можно сделать заключение, что патогенетические звенья окислительного стресса путем перекисного окисления липидов, в частности, полиненасыщенных жирных кислот, которые могут привести к значительному повреждению биологических мембран и разрушению органелл и / или клеток, безусловно, могут быть включены в уролитиаз.

Этот процесс усиливается из-за окислительного повреждения протеинов, имея серьезные последствия для функции органа, его эволюции и вероятности развития осложнений, в том числе фатальных острой или хронической почечной недостаточности.

Снижение активности антиоксидантных ферментов (SOD, GPO и GST) усугубляет вышеупомянутые нарушения, неспособность организма противостоять разрушительным последствиям окислительного стресса. [2, с.5]

Хирургическое удаление почечных камней уменьшило интенсивность окислительного стресса. Окисление уменьшалось пропорционально уменьшению свободных радикалов, которые в свою очередь определяют процессы восстановления окисления перекиси липидов. Это подтверждается статистически значимым снижением концентрации малонового диальдегида после операции (29 %, p

Хирургическое лечение уролитиаза определило особенно важное увеличение активности глутатионпероксидазы (на 50 %, p 0, 05). Кроме того, у пациентов, получавших хирургическое лечение, количество сульфгидрильных групп сывороточных белков (53 %, p

Выводы: Таким образом, хирургическое удаление камней в почках может устранить некоторые факторы, провоцирующие окислительный стресс.

Одновременно наблюдалось восстановление уровня и активности неферментативных компонентов и антиоксидантной ферментативной системы с повышением антирадикальной и антипероксидной защиты.

Эти изменения способствовали становлению молекулярной основы для восстановления функций почек и организма в целом.

Литература:

  1. Тиктинский О. Л., Александров В. П.: Мочекаменная болезнь Питер. СПб 2000:3–28.
  2. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115(10):1–115.

    Основные термины (генерируются автоматически): антиоксидантная система, окислительный стресс, AOPP, GPO, GST, III, MDA, SOD, контрольная группа, мочекаменная болезнь.

    Основные термины (генерируются автоматически): костный мозг, сочетанное воздействие, раз, облучение, гамма, группа, бихромат калия, контрольная группа, окислительный

    Оксидативный стресс и антиоксидантный статус у пациентов с осложнённым уролитиазом.

    Контрольную группу составили 11 детей аналогичного возраста без клинических проявлений каких-либо заболеваний.

    Характеристика системы «Свободно-радикальное окислениеАнтиоксидантная защита» в крови обуславливаются совокупностью общей антиоксидантной

    перекисное окисление липидов, антиоксидантная защита, падение активности, оптическая плотность, окислительный стресс, каталаза, достоверное снижение активности СОД, длина волны, группа

    При этом суммарная антиоксидантная активность определяется по ингибированию сигнала в присутствии антиоксидантов в модельной или естественной медиаторной системе и выбор

    — С. 151–167. Барабой В. А., Брехман И. И., Голожин В. Г. Перекисное окисление и стресс.

    В 3 группе показатели АОЗ гораздо больше приближены к контрольным значениям, что

    2008. — № 2. — с. 16–19. Князева Т. П. Угроза прерывания беременности и значение системы антиоксидантной защиты в диагностике и профилактике: Автореф. дис…. канд. мед. наук.

    Окислительная инактивация ферментов защитных систем организма способствует усилению

    Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging

    Modification of superoxide dismutase (SOD) mRNA and activity by a transient hypoxic stress in…

    1) стабилизация липидного бислоя путем ван-дерваальсова взаимодействия метильных групп а-токоферолов с ненасыщенными двойными связями жирных кислот фосфолипидов

    Збровская И. А., Банникова М. В. Антиоксидантная система организма, ее значение в метаболизме.

    Despite the advances of modern medicine, the wound healing by the secondary intention (without regional epithelium contraction) takes considerable time and remains a challenge. It is necessary to neutralize the powerful oxidative stress, apoptosis…

    61 Зиямутдинова З. К., Тургунова Х. З., Талимбекова Г. З. Содержание малонового диальдегида и состояние антиоксидантной системы в

    Ростов-на-Дону, 2000.-146 с. Ada А. О., Coban Т., Kapucuoglu N., Aydin A., Isimer A. The responses of rat testicular CYP and GST enzymes to Cd & Ni…

    Оставьте комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *